Working Group Report: Cryogenic System

Bernd Petersen (DESY), Arkadiy Klebaner (FNAL)
Project X Collaboration Meeting
September 9, 2010

OUTLINE

- Cryogenic Working Group (WG)
- Topics discussed
- Modifications to the cryogenic section of the ICD-2v2
- Issues that need resolution
- Summary

CRYOGENIC WG

- 16 Registered participants
- Six presentations
 - Px cryogenic system overview (A. Klebaner, FNAL)
 - Px cryogenics RD&D plan (A. Klebaner, FNAL)
 - XFEL cryogenic system (Bernd Petersen, DESY/XFEL)
 - SPX cryogenic system (Joel Fuerst, ANL)
 - 12 GeV Upgrade cryogenic system (Dana Arenius, TJNAF)
 - Px cryogenic segmentation (Jay Theilacker, FNAL)
- 1 Joint session with Cryomodules and Integration groups
- Many valuable discussions

XFEL CRYOGENICS

- 17 years of HERA and 10 years of FLASH operation experience
- All 80 to 100 cryomodules in a single segment
- 5% cryomodule technical (Eacc) contingency (76 + 4)
- Estimated time to swap cryomodule
 3 weeks
 - 1 week to warm-up + 1 week to replace + 1 week to cooldown

XFEL Pressure variations expected in XFEL linac

- Arkadiy's questions:
 - Range of presures during normal operations ?
 - -> 31 mbar +/- 0.3 mbar (1%)
 - Timescale? -> Hours! From FLASH experience we expect very stable conditions
 - Occasional/rare pressure variations ? -> Switching on/off RF , Quenches (see FLASH example)

For the switching of RF we'll need some ,ramping' by means of electrical heaters

Trips of CCs?

HELMHOLTZ ASSOCIATION

SPX

Deflecting Cavity Cryomodule Insertion

Requirements

Key refrigeration technical parameters

- Each New Cryomodule (CHL) Load
 - 300W @ 2K (0.0375 atm at return 2K bayonet, +/- 0.1 mbar standard pressure regulation
 - 300W @ 35K shield cooling
- Hall D Refrigerator Load
 - 100W @ 4.5K refrigeration
 - 0.7 liters/hr 4.5K liquefaction (lead cooling, etc.)

CRYGENIC SEGEMENTATION

Project X

Factors to Consider

- Existing accelerator experience
- Types of cryomodules
- Heat Loads and JT Heat Exchanger Location
- Reliability & Availability
- Technical Risk
- Cost
- · Warm space requirements (beam optics)
- Commissioning and Upgrade scenarios

Project X Collaboration Meeting, September 8, 2010

Page 5

Project X MODIFICATION TO THE ICD

- The cryogenic portion of the ICD-2v2 was discussed. It was found to have sufficient content for the Reference Design level document
- Cryogenic segmentation constraints and concept should be revised for the 3 GeV cw linac

ISSUES THAT NEED RESOLUTION

- Finalize cryogenic testing requirements
- Define cryogenic portion of the availability requirement (Is time to replace/repair cryomodule or scheduled shutdown included in availability requirements?)
- Superconducting components requirements specification
 - Operating pressure and temperature tolerances (+/- 10 Pa?)
 - 325 MHz and 650 MHz shields and intercepts operating temperatures
 - Finalize cavity MAWPs (XFEL 1.3 GHz 4 bara warm to PED 97/23 Code)
 - Thermal cycling limits (if any?)
 - Estimated static heat loads and mid Q_0 slope $(\gamma(T))$
- Commissioning scenarios and future upgrade scenarios

SUMMARY

- IC- 2v2 is technically feasible
- IC-2 v2 cryogenic segmentation concept should be revised
- The next iteration will benefit from better understanding of the functional requirements, reliability, and cost implications
- Close cooperation between cryogenics and cryomodule working groups is essential for the development of an effective Project X cryogenic system
- Thanks to all participants and collaborators for their contribution.